MaineHealth MaineHealth Knowledge Connection

Costas T. Lambrew Research Retreat 2022

Costas T. Lambrew Research Retreat

4-14-2022

Comparing Orthopedic Randomized Control Trials Published in High-Impact Medical and Orthopedic Journals

Andrew Lachance Maine Medical Center

Emily Dissler Maine Medical Center

Follow this and additional works at: https://knowledgeconnection.mainehealth.org/lambrew-retreat-2022

Part of the Orthopedics Commons

Recommended Citation

Lachance, Andrew and Dissler, Emily, "Comparing Orthopedic Randomized Control Trials Published in High-Impact Medical and Orthopedic Journals" (2022). *Costas T. Lambrew Research Retreat 2022*. 14. https://knowledgeconnection.mainehealth.org/lambrew-retreat-2022/14

This Book is brought to you for free and open access by the Costas T. Lambrew Research Retreat at MaineHealth Knowledge Connection. It has been accepted for inclusion in Costas T. Lambrew Research Retreat 2022 by an authorized administrator of MaineHealth Knowledge Connection.

Comparing Orthopedic Randomized Control Trials Published in High-Impact Medical and Orthopedic Journals

Richard N. Puzzitiello M.D.^{1*}, Andrew Lachance B.S.^{2*}, Anna Michalowski M.D.^{1*}, Emily, Dissler B.S.^{2*}, Mariano E. Menendez M.D.^{3*}, C. Matthew J. Salzler M.D.^{1*}

¹ Department of Orthopedic Surgery, Tufts Medical Center, Boston, MA, ² Tufts University School of Medicine, Boston, MA, ³ Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IIL

Financial Disclosures: None

PURPOSE

To compare study characteristics, methodologic quality and outcome direction among operative randomized orthopedic trials published in high-impact medical and orthopedic journals and to identify study

Journal name	Number of Articles
Arthroplasty	4 (3.1%)
JBJS	34 (26.6%)
The spine journal	5 (3.9%)
CORR	5 (3.9%)
KSSTA	11 (8.6%)
Osteoarthritis and Cartilage	1 (.8%)
Bone & Joint Journal	12 (9.4%)
Arthroscopy	10 (7.8%)
AJSM	14 (10.9%)
Acta Orthopedica	6 (4.7%)
BMJ	6 (4.7%)
JAMA	5 (3.9%)
Lancet	7 (5.5%)
Annals of Internal medicine	2 (1.6%)
NEJM	6 (4.7%)
Subspecialties	
Trauma	32 (25.0%)
Arthoplasty	14 (10.9%)
Hand	6 (4.7%)
Sports	32 (25.0%)
Spine	19 (14.8%)
Shoulder/elbow	22 (17.2%)
Pediatrics	1 (.8%)
Foot and Ankle	2 (1.6%)
Dates of publication	
2010	7 (5.5%)
2011	10(7.8%)
2012	10(7.8%)
2013	12 (9.4%)
2014	10 (7.8%)
2015	15 (11.7%)
2016	15 (11.7%)
2017	13 (10.2%)
2018	15 (11.7%)
2019	13 (10.2%)
2020	<u>8 (6.3%)</u>
KUI; randomized control trial, JB	JS; JOUTHAI OF BONE and JOINT
Surgery, CORR, Chilleal Ofmopae KSSTA: Knee Surgery Sports Tr	aumatology Arthroscopy
AJSM: American Journal of Sport	s Medicine, JAMA: Journal of

	Medical Journals (n=26)	Orthopaedic Journals (n=102)	P-Valu
Altmetric data			
Altmetric Attention Score	342.3 ± 361.2	33.2 ± 61.8	<0.001
News Articles	13 ± 13.6	2.45 ± 2.5	0.003
Blog Posts	2.9 ± 2.6	$1.4 \pm .52$	0.12
Twitter Mentions	353.9 ± 405.1	38.8 ± 85.3	<0.001
Facebook Mentions	121.5 ± 303.5	5.1 ± 9.2	0.011
Citations	148.4 ± 147.6	59.8 ± 67.7	<0.001
Annual Citation Rate	30.3 ± 17	9.35 ± 7.55	<0.001
Jadad Scores	3.2 ± .9	2.9 ± .9	0.15
Outcomes			
Positive ^b	7 (26.9%)	33 (32.4%)	0.59
Negative ^b	2 (7.7%)	16 (15.7%)	0.53
Neutral ^b	17 (65.4%)	53 (52%)	0.22
RCT; randomized control trial			

attributes associated with greater exposure and impact

MATERIALS AND METHODS

- RCTs published between January 2010-December 2020 in 6 high-impact medical journals and 10 high-impact orthopedic journals were analyzed
- RCTs reporting outcomes after an orthopedic surgical intervention compared with nonsurgical interventions or a less-invasive/extensive surgical procedure were included
- Study characteristics, methodology, outcomes, and Altmetric data including citation rate and Altmetric attention scores (AAS), were collected
- Primary study outcomes were categorized as positive (favoring operative/more extensive surgery), negative (favoring nonoperative/less extensive surgery), or neutral
- Methodological quality of each study was graded by the Jadad scale
- Table 2. Comparison of study characteristics between orthopaedic RCTs published in medical and orthopaedic journals*

	Medical Journal (n=26)	Orthopaedic Journal (n=102)	P-Value
# of authors	14 ± 9	6.3 ± 2.8	<0.001*
# of patients	227 ± 285	103 ± 82	<0.001*

less extensive surgery, Neutral; no difference in results between treatment groups

RESULTS

- 128 RCTs were included, 26 from medical and 102 from orthopedic Journals
- Studies published in medical journals included more authors (14.0 ± 9.0 vs. 6.3 ± 2.8, P<.001), larger sample sizes (277 ± 285 vs. 103 ± 82, P<0.001), more participating institutions (14 ± 18 vs. 3.5 ± 5.8, p<.001),
- and more often received funding (100% vs. 46%, P<0.001)
 Average methodologic quality score did not differ between medical and orthopedic journals (Jadad Score: 3.2 vs. 2.9, P=0.12)
- After adjustment with multivariable linear regressions, publication in a medical journal was the only factor significantly associated with annual citation rate (β =1.48, CI [0.98 – 1.98], P<0.001), and AAS (β =287.3, CI [162.5 - 412.1], P<0.001)
- The direction of the primary study outcome did not differ between studies in medical and orthopedic journals (Positive: 26.9% vs. 32.4%, P=0.59; Negative: 7.7% vs. 15.7%, P=0.53; Neutral: 65.4% vs. 52%,

Linear regressions were utilized to assess for study features associated with AAS and citation rates

# of surgeons	67.8 ± 130	5.1 ± 9.6	<0.001*
# of hospitals	14 ± 18	3.5 ± 5.8	<0.001*
Funding source			
Government	12 (46.2%)	11 (10.8%)	<0.001*
Industry	4 (15.4%)	7 (6.9%)	0.23
Institutional	3 (11.5%)	16 (15.7%)	0.76
Multiple	7 (26.9%)	11 (10.8%)	0.03*
Other	0	2 (2%)	1
None	0	55 (53.9%)	<0.001*
RCT; randomized contr	ol trial		
 Denotes statistical sig Continuous data prese numbers with percentag 	nificance at P < 0.05 nted as means ± standard (ges	deviations. Categorical data	presented as
. Methodological char s	acteristics of orthopaed	lic RCTs published in n	edical and orthops

P=0.22)

DISCUSSION

Previous results support and complement our finding that the direction of study results do not differ between medical and orthopedic journals, by demonstrating that the direction of study results do not influence the likelihood of acceptance for publication in either type of journal

- Our results suggest that screening studies by AAS may disproportionally promote RCTs published in medical journals, despite comparable quality to those published in orthopedic journals.
- With a larger sample size that previous studies, our study may more accurately depict the digital impact of orthopedic RCTs published in medical journals

RESULTS

amals	s or ormopaeure ree i s puonsaeu in mearcar anu ormopaeure	
	Medical Journal (n=26)	Orthopaedic Journal (n=102)
Control Group		
Primary PT	11 (42.3%)	20 (19.6%)
Sham Surgery	5 (19.2%)	4 (3.9%)
Nonsurgical immobilization	4 (15.4%)	21 (20.6%)
Immobilization and PT	0	6 (5.9%)
Other	1 (3.8%)	4 (3.9%)
Less Surgery	5 (19.2%)	47 (46.1%)
Double Blinding	4 (15 4%)	10 (9.8%)

Intention-to-treat	25 (96.2%)	40 (39.2%)
As-treated	1 (3.8%)	1 (1%)
Intention-to-treat and as-treated	0	4 (3.9%)
Per Protocol	0	3 (2.9%)
Not Reported	0	54 (52.9%)

