2022

Projected Utility of the Ready Set Return Application

Erin Hartigan
University of New England, Portland, Maine

Et al.

Follow this and additional works at: https://knowledgeconnection.mainehealth.org/jmmc

Part of the Physical Therapy Commons, and the Sports Sciences Commons

Recommended Citation

Hartigan, Erin; Sirois, Cassidy; Lindau, Jonathan; Lockwood, Taylor; Nesom, Valerie; and Solomons, Nan M. (2022) "Projected Utility of the Ready Set Return Application," *Journal of Maine Medical Center*: Vol. 4 : Iss. 2 , Article 8.
Available at: https://knowledgeconnection.mainehealth.org/jmmc/vol4/iss2/8 https://doi.org/10.46804/2641-2225.1129

The views and thoughts expressed in this manuscript belong solely to the author[s] and do not reflect the opinions of the Journal of Maine Medical Center or MaineHealth.

This Innovation Highlight is brought to you for free and open access by Maine Medical Center Department of Medical Education. It has been accepted for inclusion in the Journal of Maine Medical Center by an authorized editor of the MaineHealth Knowledge Connection. For more information, please contact Dina McKelvy mckeld1@mmc.org.
Projected Utility of the Ready Set Return Application

Authors
Erin Hartigan, Cassidy Sirois, Jonathan Lindau, Taylor Lockwood, Valerie Nesom, and Nan M. Solomons

This innovation highlight is available in Journal of Maine Medical Center: https://knowledgeconnection.mainehealth.org/jmmc/vol4/iss2/8
INNOVATION HIGHLIGHT

Projected Utility of the Ready Set Return Application

Erin Hartigan, PhD, DPT, ATC,1 Cassidy Sirois, ATC, DPT,1 Jonathan Lindau, DPT,1 Taylor Lockwood, DPT,1 Valerie Nesom, DPT,1 Nan M. Solomons, PhD1

1University of New England, Portland, Maine

Introduction: An application (app) that summarizes best practices may promote standardized care among clinicians treating patients during anterior cruciate ligament (ACL) rehabilitation. The purpose of this study was to test the prototype of the Ready Set Return (RSR) app to determine receptiveness for use in clinical practice.

Methods: Two mock patient cases were used to familiarize 19 physical therapists and athletic trainers with the RSR app. Then these participants provided feedback about the user experience, features, and content using Likert ratings and free-text fields through an online survey.

Results: Most participants (89%-95%) would recommend the RSR app to others and noted that the app would allow them to stay up to date with current practice. Thematic analysis of free-text responses indicated that the app was easy to navigate and that evidence-based progressions and clinical milestones were useful in clinical practice. Users suggested enhancements that included adding patient access and specific treatment options.

Discussion: Generalizable findings suggest that clinicians appreciated the details and images of specific tests and measures; automatic test scoring; and standardized benchmarks to progress care. Specific findings suggest the RSR app’s summary of evidence-informed practice may help standardize care, specifically for patients undergoing rehabilitation after ACL reconstruction.

Conclusion: This subset of clinicians reacted positively to the prototype and felt that the RSR app would benefit their practice and patients. This feedback will guide the next iteration, advancing from a low-fidelity to high-fidelity prototype.

Keywords: usability testing, best practices, digital technology, mobile health, anterior cruciate ligament reconstruction

Barriers to adopting best practices can result in suboptimal care.1 The plethora of empirical evidence regarding best practices after anterior cruciate ligament (ACL) injury, combined with higher productivity expectations, makes contemporary practice difficult for clinicians. Not following evidence-informed care after ACL injury leads to unwarranted practice variation and can contribute to poor clinical outcomes.1 Technology that summarizes evidence-informed practice guidelines may allow clinicians to integrate this evidence more readily into their clinical setting. Clinicians are not following best practices after ACL reconstruction (ACLR).1 Physical therapists (PT) reported inconsistencies in standardized practice after an ACLR. They also reported a gap in rehabilitation services, specifically when a PT discharges an athlete from formal physical therapy to, often months later, when the athlete attempts to return to sports (RTS).1 Though annual incidence rates of 0.03% to 0.04% for an ACL rupture are fairly similar across the United States, Scandinavia, and Europe,2 the general perception in the United States is that surgery is needed to RTS.3,5 Approximately $13000 is spent on overall health care use per ACL surgery, and the frequency of surgeries is increasing.6,7 Only 55% of people who are injured RTS competitively,6 and people who do RTS have a greater risk of re-injury.9,10 These poor outcomes demonstrate the need to improve rehabilitation practices for patients after ACLR.
Technology that summarizes best practices to guide clinical care after ACL injury is currently unavailable. We designed a prototype of the Ready Set Return mobile application (RSR app) to address clinicians’ needs, including giving them access to standardized tests, clinical milestones to advance care, and user-friendly screens to facilitate communication among the rehabilitation team. The practicality of this RSR app and the ability to use technology to integrate evidence-informed care into clinical practice is innovative. The app contains 4 readiness levels, each with additional sublevels. Patients must meet the readiness levels before clinicians can advance them to the next level. Icons provide additional information, including progression criteria and information about patient-specific clinical milestones (Figure 1).

This manuscript describes clinicians’ experience using the RSR app to guide ACL rehabilitation practice. Quantitative results were enriched with qualitative feedback. Having licensed clinicians trial the app and provide feedback about their experience is a crucial step in developing the RSR app.

METHODS

We used purposeful sampling to recruit clinicians from various clinical settings who likely provide rehabilitation after ACLR. Practicing PTs and athletic trainers (ATs) in Maine who agreed to confidentiality were included in the study. PTs and ATs with no experience treating patients after ACLR were excluded. Nineteen PTs and ATs consented, enrolled, and participated in the study.

An app designer pre-populated the prototype with data from 2 mock patient cases. During data collection, the RSR app was accessed via a laptop through prototyping software (v2016, Figma, Inc, San Francisco, CA). For the first mock case, participants observed the researcher as they progressed the mock patient successfully through all levels: (1) Walk Without an Assistive Device, (2) Walk/Jog Progression, (3) Modified Sports, and (4) Return to Sports (Figure 1). During the second mock case, participants could navigate freely through the app, viewing clinical milestones, hyperlinks, icons for additional details, references to support the content, and a section with frequently asked questions. The doctor of physical therapy (DPT) student researchers recorded notes about participants’ comments and questions during data collection using Research Electronic Data Capture (REDCap; v11.0.3, Vanderbilt University, Nashville, TN). Students verified these notes with each participant for accuracy.

Next, participants completed a demographic survey and a user-feedback survey that included questions measured with a 5-point Likert scale (Table 1). Eight open-ended questions allowed users to explain their numerical responses, elaborate on features and usability, and suggest enhancements.

To minimize bias, DPT students collected data anonymously through REDCap. Means (SD) were calculated for continuous data, and frequency counts were calculated for each Likert question using Microsoft Office 365 Excel 2019 (v16.0 6742.2048, Microsoft Corporation, Redmond, WA). Two co-authors independently reviewed the free-text survey responses, coded data, and generated themes. These 2 authors then compared codes, reviewed themes, and agreed on common themes and subcategories.

This study was approved by the Institutional Review Board at the University of New England (IRB #0621-04).

RESULTS

Of the total sample (N = 19), 12 were PTs, 4 were ATs, and 3 were licensed as both (PT/ATs). Participants’ years of clinical experience was a mean [SD] of 3.2 [5.3] years for ATs, 6.4 [8.1] years for PTs, and 10.3 [8.1] years for PT/ATs. The number of patients treated by the participants after ACLR was about 3 per year for ATs, 4 per year for PTs, and 10 per year for PT/ATs. All ATs worked in an academic facility, whereas most PTs (n = 11) and all PT/ATs worked in an outpatient clinic or private practice.

Results from participants’ quantitative ratings are illustrated in Table 1. Two authors summarized qualitative responses in 4 main themes with subcategories and supporting exemplars.

Navigation

Intuitive (n = 9): “easy, clear cut [sic] way to progress someone...helps you remember exactly what to do throughout the way”

Logical flow (n = 6): “able to tell which button would bring you to each link”

Clear layout (n = 6): “Things were highlighted well and easy to find”
Meaning of Results:

Status: The criteria of knee effusion grade of trace or less effusion has been met.

Clinical milestone: Knee effusion clinical milestone has been met.

Recommendation: Teach patient how to self-assess and grade knee effusion and to follow knee effusion rules independently to test tolerance to modified sports activities. Teach patient knee soreness rules.

Clinical Milestone Knee Effusion Grade

<table>
<thead>
<tr>
<th>Grade</th>
<th>Met vs Not Met</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1+</td>
<td>Met</td>
</tr>
<tr>
<td>≤ trace</td>
<td>Met</td>
</tr>
</tbody>
</table>

Criteria to begin running progression

<table>
<thead>
<tr>
<th>Met vs Not Met</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ trace</td>
</tr>
</tbody>
</table>

Criteria to complete hop testing

<table>
<thead>
<tr>
<th>Met vs Not Met</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ trace</td>
</tr>
</tbody>
</table>

Figure 1. Screenshots of Content in the RSR App. Mock patient, John Doe, has progressed through the first 2 levels of rehab after ACLR. Today, the clinician tested John to see if he could return to modified sports. The clinician clicked on Level 3 and entered data for each of the 7 sublevels. John Doe passed all criteria to return to modified sports. If the clinician clicks the eyeball icon, then a screen pops up to explain the meaning of the results. If the clinician clicks the diamond icon, then a screen pops up to illustrate the clinical milestone. ACLR, anterior cruciate ligament reconstruction; LSI, Limb Symmetry Index; KOS-SAS, Knee Outcome Survey Sports Activities Scale; ROM, range of motion; RSR, Ready Set Return.

Table 1. Likert Responses to User Experience

<table>
<thead>
<tr>
<th>I could easily find what I was looking for in the app.</th>
<th>Strongly agree</th>
<th>Agree</th>
<th>Neutral</th>
<th>Disagree</th>
<th>Strongly disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63%</td>
<td>32%</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>The quality of EBP content in the app will allow me stay up to date with my practice.</td>
<td>63%</td>
<td>27%</td>
<td>5%</td>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>Including time-based criteria will better inform my decisions to progress patients.</td>
<td>53%</td>
<td>37%</td>
<td>5%</td>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>Including criterion-based measures will better inform my decision to progress patients.</td>
<td>63%</td>
<td>32%</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>I would recommend the RSR app.</td>
<td>74%</td>
<td>21%</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Abbreviations: EBP, evidence-based practice; RSR, Ready Set Return.
Clinical utility

Evidence-based progression (n = 11): “the algorithm...information to track patients and ensure you have met all necessary criteria before moving to the next progression”

Standardized tests (n = 6): “access to the most up to date [sic] protocols...and this standardizes it for all of us” and “[Y]ou may forget to do something specific for a test, especially if you haven't done it in a while”

Patient education (n = 5): “Patient being able to visualize which areas...to improve...to likely improve patient buy-in, compliance, and outcomes”

Value

Useful for all patients after ACLR (n = 13): “I would use it every step of the way....it may be easy to overlook excessive effusion if strength numbers look good, which could lead to premature progression and possible injury”

During transition points (n = 3): “with ACLR patients who are looking to return to a sport”

Specific users (n = 6): “new graduates”, “rural clinicians”, “generalists who rarely treat patients post-ACL injury” and “clinicians wanting to keep current with ACL rehabilitation”

Suggested Enhancement

Patient access (n = 6): provide patient access to their profile

More details about treatment options (n = 4): add more details about treatment options

DISCUSSION

This study analyzed the usefulness and user receptiveness of the RSR app. Market fit was confirmed, as clinicians reported a high likelihood to use, satisfaction with content, the practicality and ease-of-use in clinical practice, and that they would recommend the app. Also, participants suggested that they would use the RSR app as an educational tool for patients.

The overall positive feedback supports that the RSR app can summarize evidence-informed practice and may effectively standardize care when clinicians treat patients after ACLR. Previous findings indicated that following similar RTS timelines, and performance criteria, reduced re-injury rates in patients after ACLR by up to 84%. Thus, using the RSR app to progress care after ACLR may reduce risk of re-injury.

Athletes younger than 25 years who RTS have the highest risk of re-injury after ACLR. More than 50% of clinicians who were surveyed in this study stated they would use this app with every patient after ACLR across the continuum of care. This finding suggests that the RSR app could bridge the care gap when formal rehabilitation ends, but the athlete is not yet cleared to RTS. Our survey responses also suggest that the RSR app addresses ATs’ concerns of not having the time, resources, and confidence to document patient care. Further, if both PTs and ATs use the RSR app with their patients, expectations would be consistent during the transition from physical therapy services to clearance for RTS.

Fear of re-injury and lack of confidence after ACLR are primary reasons athletes choose not to RTS. Participants indicated that they would use the RSR app to educate patients about where they are in their rehabilitation journey, such as when milestones have been achieved and to discuss future milestones. Because the RSR app illustrates progression guidelines and patient status, the app may improve clarity in communication and expectations. Also, an athlete’s self-efficacy and confidence may increase as they meet objective milestones in the RSR app.

The limitations of this study include a small sample population, limited interoperability with the low-fidelity prototype, and the use of unvalidated surveys. Researchers pilot-tested the survey for understandability with faculty who publish survey data and DPT students across classes. One participant selected “strongly disagree” for each scaled response. However, the free-text responses were incongruent, as all responses to support their selection were positive. The suggested enhancements indicated areas to improve, including using the RSR app for patient education. Thus, some language will need to be modified to include lay terminology.
CONCLUSIONS

A subset of clinicians reacted positively to the prototype and felt that the RSR app would benefit their practice and patients. This feedback will guide the next iteration, which will advance from a low-fidelity to a high-fidelity prototype. Although these preliminary findings are positive, further research is needed to determine whether the RSR app has utility in the clinical setting, is received positively by patients after ACLR, and, ultimately, can improve patient outcomes.

Conflict of interest

Erin Hartigan has intellectual property (IP) in the form of copyrighted content for the prototype of the RSR application. Erin Hartigan and Nan Solomons have secured shared funding from the University of New England’s Makerspace, Westbrook College of Health Professions, and Department of Physical Therapy to pay Bethany Rockney for freelance design.

Acknowledgments

We thank Bethany Rockney for services with freelance design.

REFERENCES