MaineHealth MaineHealth Knowledge Connection

MaineHealth Maine Medical Center

All MaineHealth

5-1-2019

Per- and Polyfluoroalkyl Substances and Bone Mineral Density in Mid-childhood

Shravanthi M. Seshasayee Maine Medical Center

Rachel Cluett

Lisa B. Rokoff

Sheryl L. Rifas-Shiman

Diane R. Gold

See next page for additional authors

Follow this and additional works at: https://knowledgeconnection.mainehealth.org/mmc

Part of the Pediatrics Commons

Recommended Citation

Seshasayee, Shravanthi M.; Cluett, Rachel; Rokoff, Lisa B.; Rifas-Shiman, Sheryl L.; Gold, Diane R.; Coull, Brent; Gordon, Catherine M.; Rosen, Clifford J.; Oken, Emily; Sagiv, Sharon K.; and Fleisch, Abby F., "Perand Polyfluoroalkyl Substances and Bone Mineral Density in Mid-childhood" (2019). *MaineHealth Maine Medical Center*. 698.

https://knowledgeconnection.mainehealth.org/mmc/698

This Poster is brought to you for free and open access by the All MaineHealth at MaineHealth Knowledge Connection. It has been accepted for inclusion in MaineHealth Maine Medical Center by an authorized administrator of MaineHealth Knowledge Connection.

Authors

Shravanthi M. Seshasayee, Rachel Cluett, Lisa B. Rokoff, Sheryl L. Rifas-Shiman, Diane R. Gold, Brent Coull, Catherine M. Gordon, Clifford J. Rosen, Emily Oken, Sharon K. Sagiv, and Abby F. Fleisch

¹Center for Outcomes Research and Evaluation, Maine Medical Center Research Across the Lifecourse, Department of Population Medicine, Harvard T. H. Chan School of Public Health, ³Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard T. H. Chan School of Public Health, ³Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard T. H. Chan School of Public Health, ³Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, ⁴Channing Division of Network Medicine, Brigham and Women's Hospital, ⁶Division of Network Medicine, ⁸Division of Netwo Adolescent/Young Adult Medicine, Boston Children's Hospital, ⁷Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California - Berkeley, ⁹Pediatric Endocrinology and Diabetes, Maine Medical Center

Background

- Identifying factors that impair bone accrual during childhood is a critical step toward osteoporosis prevention.
- One potential risk factor not well characterized in childhood is the role of chemicals in the environment.
- Perfluoroalkyl substances (PFASs) are synthetic additives used to make clothing, furniture, cookware stain repellant and are detectable in almost all US adults¹.
- PFASs act as PPAR-γ agonists,² androgen receptor antagonists,³ and directly intercalate i bone,⁴ raising the possibility that they may lead to low bone accrual.
- While two population-based studies in adults have shown associations between PFASs and areal bone mineral density (aBMD),^{5,6} the extent to which PFASs may affect aBMD in child unknown.

<u>Objective</u>

Examine the associations of plasma PFAS concentrations with aBMD Z-score in mid-child (mean 7.9 years)

Study population (Project Viva)

Boston-area pregnant women enrolled 1999-2002 into the prospective Project Viva birth co

Enrolled:
Linoneu.
2,128 mother-
infant pairs

Mid-childhood follow-up: 1,116 children

Plasma PFAS measured: 653 children

Methods

Exposure (PFASs):

- Perfluorooctanoate (**PFOA**), perfluorooctane sulfonate (**PFOS**), perfluorodecanoate (**PFDA**), perfluorohexane sulfonate (**PFHxS**), 2-(N-methyl-perfluorooctane sulfonamido) acetate (**MeFOSAA**), perfluorononanoate (**PFNA**)
- Measured in plasma by CDC staff using on-line solid-phase extraction with isotope dilution high performance liquid chromatography mass spectrometry

Outcome (aBMD Z-score):

- Total body (excluding the skull) aBMD measured via dual-energy X-ray absorptiometry (DXA)
- Analyzed DXA data with pediatric software (Hologic, version 12.6) and used U.S. national reference data to derive age-, sex-, race-, and height-adjusted aBMD Z-scores.⁷

Statistical analyses:

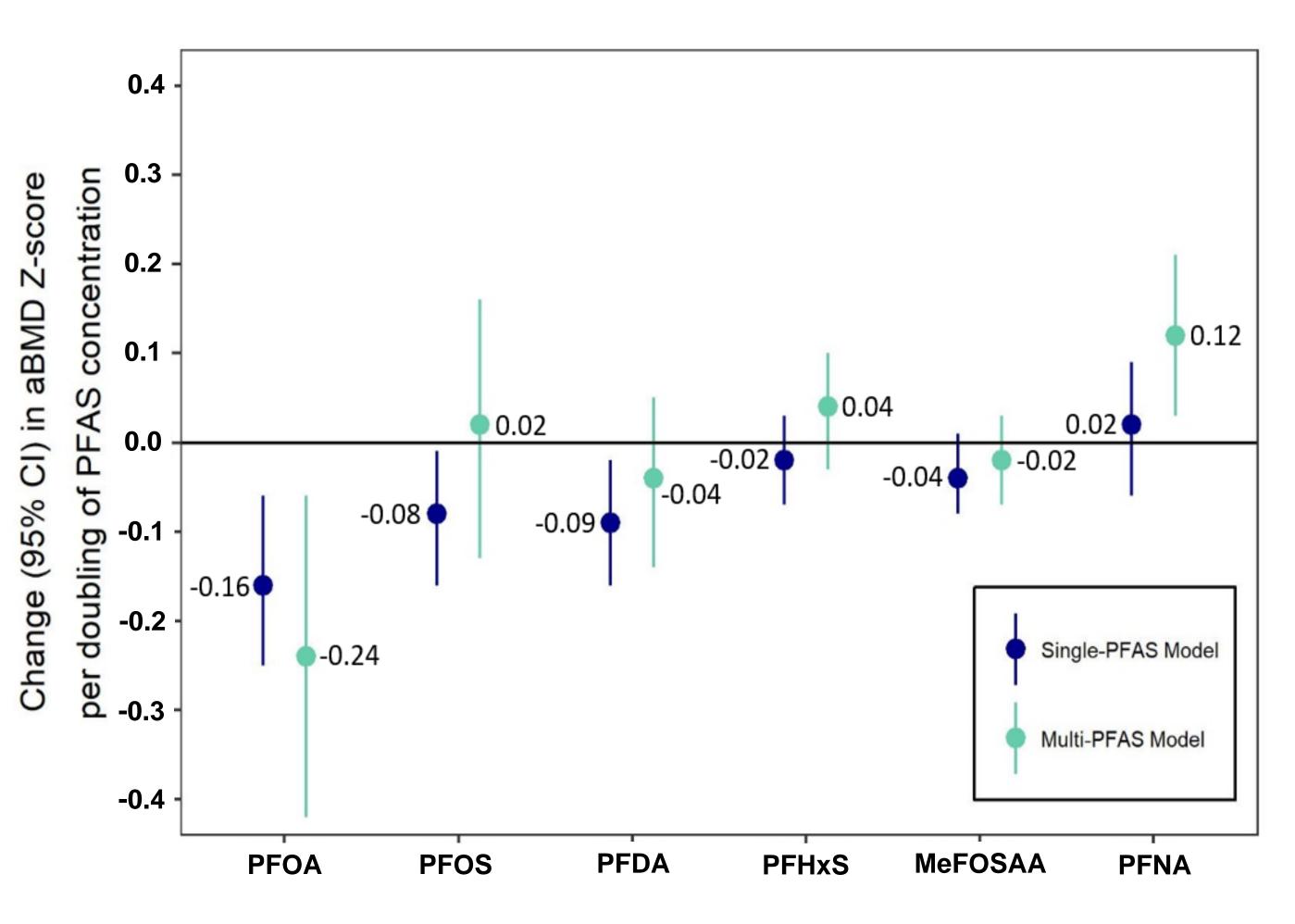
- Used linear regression to examine associations of each PFAS with aBMD Z-score separately in single-PFAS models, and mutually adjusted with other PFASs in a multi-PFAS model
- Examined association between the PFAS mixture and aBMD Z-score via weighted quantile sum (WQS) regression. WQS generates a composite mixture index for each participant, assigning each PFAS within the mixture a weight reflecting: Strength of its association with aBMD Z-score Collinearity with other PFASs within mixture
- Log₂ transformed plasma PFAS concentrations for linear associations with outcome
- Covariates in final models were maternal age, education, annual household income, census tract median household income, and child age, sex, race/ethnicity, and dairy intake, physical activity, and year of blood draw
- No evidence for effect modification by sex, so present results without an interaction term

Per- and Polyfluoroalkyl Substances and Bone Mineral Density in Mid-childhood Shravanthi M. Seshasayee, BDS MPH,^{1*} Rachel Cluett, MPH,² Lisa B. Rokoff, MS,³ Sheryl L. Rifas-Shiman, MPH,³ Diane R. Gold, MD MPH,^{2, 4} Brent Coull, PhD,⁵ Catherine M. Gordon, MD, MS,⁶ Clifford J. Rosen, MD,⁷ Emily Oken, MD MPH,³ Sharon K. Sagiv, PhD MPH,⁸ Abby F. Fleisch, MD MPH^{1, 9}

	<u>Results</u>			
toward	Table 1. Participant chara	cteristics o	overall a	
micals in the			erall :576	0 0 n=
hing, furniture, and	Maternal characteristics Maternal age at enrollment (years)	31.8	± 5.7	29.8
ly intercalate into	College graduate (%) Individual household income		(64)	59 (
een PFASs and low aBMD in children is	< \$40,000/year \$40,001-\$70,000/year > \$70,000/year Census tract median house) 85 (89 (369 (hold	16)	39 (25 (65 (
	income (\$10,000/year) Child characteristics	62.7 ± 7.9 ±		53.5 ± 8.2 ±
re in mid-childhood	Age (years) Female (%) Race/ethnicity (%) White	7.9 ± 280 (328 ((49)	0.2 <u>-</u> 73 (37 (
	Black Other	528 (129 (117 ((23)	57 (66 (41 (
ct Viva birth cohort	Dairy intake (servings/wk) Physical activity (hrs/wk)	2.2 ± 1.9 ±	1.4	2.0 ± 1.9 ±
aBMD measured: 576 children	aBMD Z-score ^a PFOA quartile minimum and ng/mL for Q3, and 6.2-14.3 ng	/mL for Q4	alues: <0	
	Table 2. Plasma PFAS con		distribi Iasma P	
		PFOA	PFOS	
	Median (IOR)	44(32)	64 (56	SI ()

	F	Plasma PFA	S concentr	rations (ng/	mL)		
	PFOA	PFOS	PFDA	PFHxS	MeFOSAA	PFNA	MeFOSAA
Median (IQR)	4.4 (3.2)	6.4 (5.6)	0.3 (0.3)	1.9 (2.3)	0.3 (0.5)	1.5 (1.2)	
5 th percentile	1.9	2.1	< LOD a	0.6	< LOD a	0.7	PFOA
95 th percentile	9.8	18.7	0.7	14.7	1.9	5.1	
Detection frequency (%)	99.5	99.5	88.4	99.5	65.6	99.5	PFOS
-		Spearman	correlation	n coefficien	ts		
PFOA	1.00						PFHxS
PFOS	0.79	1.00					
PFDA	0.69	0.59	1.00				PFNA
PFHxS	0.60	0.67	0.34	1.00			
MeFOSAA	0.50	0.63	0.32	0.37	1.00		
PFNA	0.43	0.35	0.57	0.13	0.22	1.00	Each IQR increment in (95% CI: -0.28, -0.04).

Strengths and Limitations


Strengths

- Among the first studies to evaluate role of toxicants on bone health in childhood
- PFAS concentrations typical for US population during peak production
- Used WQS regression to assess exposure to PFAS mixture

Conclusions

- Higher exposure to PFASs was associated with lower aBMD Zscores in children.
- Lower exposures to environmental toxicants such as PFASs may improve childhood bone accrual and optimize lifelong skeletal health.

and by $PEOA$	nlasma conc	entration				
I and by PFOA plasma concentration Quartiles of PFOA ^a plasma concentration						
Q1	Q2	Q3	Q4			
n=145	n=147	n=140	n=144			
Mean ± SD or n (%)						
29.8 ± 6.5	31.6 ± 5.9	32.7 ± 5.0	33.1 ± 4.5			
59 (41)	89 (61)	101 (73)	115 (80)			
39 (30)	20 (14)	15 (11)	11 (8)			
25 (19)	23 (17)	22 (16)	19 (13)			
65 (51)	96 (69)	98 (73)	110 (79)			
53.5 ± 21.0	60.4 ± 23.2	64.7 ± 21.0	72.4 ± 25.5			
8.2 ± 1.0	8.0 ± 0.8	7.8 ± 0.7	7.7 ± 0.6			
73 (50)	73 (50	101 (45)	71 (49)			
37 (26)	80 (54)	94 (68)	117 (81)			
66 (46)	32 (22)	21 (15)	10 (7)			
41 (28)	35 (24)	24 (17)	17 (12)			
2.0 ± 1.5	2.2 ± 1.5	2.3 ± 1.6	2.4 ± 1.5			
1.9 ± 1.5	1.7 ± 1.3	1.9 ± 1.2	1.9 ± 1.5			
-0.73 ± 0.73	-0.81 ± 0.84	-0.95 ± 0.73	-0.93 ± 0.78			
<0.1 (LOD)-3.0 ng/mL for Q1, 3.1-4.4 ng/mL for Q2, 4.5-6.1						

PFHxS 3%

PFNA 0%

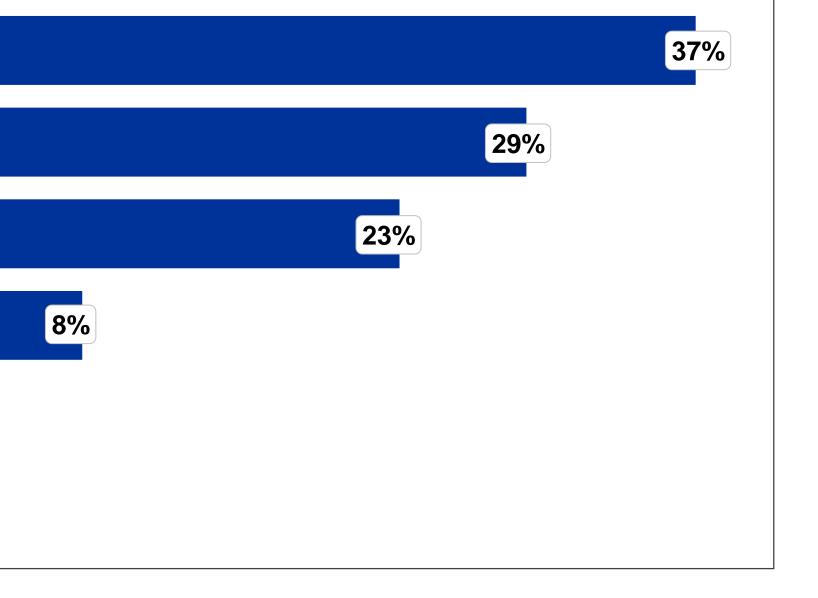
Acknowledgements

We thank the staff and participants of Project Viva for their support. We also thank CDC staff for conducting PFAS measurements

Limitations

References

- Sci Technol 41:2237-2242.


- 99:2173-2180

The authors have no financial relationships to disclose or conflicts of interest to resolve.

Figure 1. Single and multi-PFAS models showing adjusted associations of individual PFAS plasma concentrations with aBMD Z-score

Figure 2. Weights assigned to individual PFASs within the WQS composite index

IQR increment in the WQS index was associated with a -0.16 lower aBMD Z-score

• High SES cohort limits generalizability

• Cross sectional analysis, so unable to assess mediation by BMI or pubertal status

Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Tully JS, Needham LL. 2007. Serum concentrations of 11 polyfluoroalkyl compounds in the U.S. Population: Data from the National Health and Nutrition Examination Survey (NHANES). Environ

Yamamoto J, Yamane T, Oishi Y, Kobayashi-Hattori K. 2015. Perfluorooctanoic acid binds to peroxisome proliferatoractivated receptor gamma and promotes adipocyte differentiation in 3T3-I1 adipocytes. Biosci Biotechnol Biochem 79:636-

. Kjeldsen LS, Bonefeld-Jorgensen EC. 2013. Perfluorinated compounds affect the function of sex hormone receptors. Environ Sci Pollut Res Int 20:8031-8044

4. Koskela A, Koponen J, Lehenkari P, Viluksela M, Korkalainen M, Tuukkanen J. 2017. Perfluoroalkyl substances in human bone: Concentrations in bones and effects on bone cell differentiation. Sci Rep 7:6841.

Khalil N, Chen A, Lee M, Czerwinski SA, Ebert JR, DeWitt JC, et al. 2016. Association of perfluoroalkyl substances, bone mineral density, and osteoporosis in the U.S. Population in NHANES 2009–2010. Environ Health Perspect 124:81-87. 6. Lin LY, Wen LL, Su TC, Chen PC, Lin CY. 2014. Negative association between serum perfluorooctane sulfate concentration and bone mineral density in U.S. premenopausal women: NHANES, 2005-2008. J Clin Endocrinol Metab

Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, et al. 2011. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: Results of the bone mineral density in childhood study. J Clin Endocrinol Metab 96:3160-3169.