Per- and Polyfluoroalkyl Substances and Bone Mineral Density in Mid-childhood

Shravanthi M. Seshasayee
Maine Medical Center

Rachel Cluett

Lisa B. Rokoff

Sheryl L. Rifas-Shiman

Diane R. Gold

See next page for additional authors

Follow this and additional works at: https://knowledgeconnection.mainehealth.org/mmc

Part of the Pediatrics Commons

Recommended Citation
Seshasayee, Shravanthi M.; Cluett, Rachel; Rokoff, Lisa B.; Rifas-Shiman, Sheryl L.; Gold, Diane R.; Coull, Brent; Gordon, Catherine M.; Rosen, Clifford J.; Oken, Emily; Sagiv, Sharon K.; and Fleisch, Abby F., "Per-and Polyfluoroalkyl Substances and Bone Mineral Density in Mid-childhood" (2019). Maine Medical Center. 698.
https://knowledgeconnection.mainehealth.org/mmc/698

This Poster is brought to you for free and open access by the All MaineHealth at MaineHealth Knowledge Connection. It has been accepted for inclusion in Maine Medical Center by an authorized administrator of MaineHealth Knowledge Connection. For more information, please contact mckeld1@mmc.org.
Authors
Shravanthi M. Seshasayee, Rachel Cluett, Lisa B. Rokoff, Sheryl L. Rifas-Shiman, Diane R. Gold, Brent Coull, Catherine M. Gordon, Clifford J. Rosen, Emily Oken, Sharon K. Sagiv, and Abby F. Fleisch

This poster is available at MaineHealth Knowledge Connection: https://knowledgeconnection.mainehealth.org/mmc/698
Background

Identifying factors that impair bone accrual during childhood is a critical step toward osteoporosis prevention.

Higher exposure to PFASs was associated with lower aBMD Z-score.

Methods

Examine the associations of plasma PFAS concentrations with aBMD Z-score in mid-childhood (mean 7.9 years).

Study population (Project Viva)

Examine the associations of plasma PFAS concentrations with aBMD Z-score in mid-childhood (mean 7.9 years).

Boston-area pregnant women enrolled 1999-2002 into the prospective Project Viva birth cohort study.

Enrolled: 2,128 mother-infant pairs

Mid-childhood follow-up: 1,116 children

Plasma PFAS measured: 653 children

aBMD measured: 576 children

Table 1. Participant characteristics overall and by PFAS plasma concentration quartiles

<table>
<thead>
<tr>
<th>Quartiles of aBMD Z-score</th>
<th>Overall</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=576</td>
<td>144</td>
<td>145</td>
<td>145</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>aBMD Z-score</td>
<td>-0.34</td>
<td>-2.5</td>
<td>-2.2</td>
<td>-2.0</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

Statistical analyses:

- Used linear regression to examine associations of each PFAS with aBMD Z-score separately in single-PFAS models, and mutually adjusted with other PFASs in a multi-PFAS model.

Table 2. Plasma PFAS concentration distributions and correlations

<table>
<thead>
<tr>
<th>Plasma PFAS concentrations (ng/mL)</th>
<th>PFOA</th>
<th>PFOS</th>
<th>PFHxS</th>
<th>MeFOSAA</th>
<th>PFNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (IQR)</td>
<td>4.4 (3.2)</td>
<td>6.4 (5.6)</td>
<td>0.3 (0.9)</td>
<td>1.9 (3.2)</td>
<td>0.3 (0.5)</td>
</tr>
<tr>
<td>5th percentile</td>
<td>1.9</td>
<td>2.1</td>
<td>< LOD</td>
<td>0.6</td>
<td>< LOD</td>
</tr>
<tr>
<td>95th percentile</td>
<td>9.8</td>
<td>18.7</td>
<td>0.7</td>
<td>14.7</td>
<td>1.9</td>
</tr>
<tr>
<td>Detection frequency (%)</td>
<td>99.5</td>
<td>88.4</td>
<td>99.5</td>
<td>65.6</td>
<td>99.5</td>
</tr>
</tbody>
</table>

Results

Strengths and Limitations

Strengths

- Among the first studies to evaluate role of toxics on bone health in childhood.

- PFAS concentrations typical for US population during peak production.

- Used WGS regression to assess exposure to PFAS mixture.

Limitations

- High SES cohort limits generalizability.

- Cross sectional analysis, so unable to assess mediation by BMI or pubertal status.

Conclusions

- Higher exposure to PFASs was associated with lower aBMD Z-scores.

- Lower exposures to environmental toxics such as PFASs may improve childhood bone accrual and optimize lifelong skeletal health.

Acknowledgements

We thank the staff and participants of Project Viva for their support. We also thank CDC staff for conducting PFAS measurements.

References