Validity of neonatal POC glucose testing

Matthew Turnquist
Maine Medical Center

Amy Haskins
Maine Medical Center

Christina Holt
Maine Medical Center

Follow this and additional works at: https://knowledgeconnection.mainehealth.org/mmc

Part of the Congenital, Hereditary, and Neonatal Diseases and Abnormalities Commons, and the Obstetrics and Gynecology Commons

Recommended Citation

Turnquist, Matthew; Haskins, Amy; and Holt, Christina, "Validity of neonatal POC glucose testing" (2019). Maine Medical Center. 699.
https://knowledgeconnection.mainehealth.org/mmc/699

This Poster is brought to you for free and open access by the All MaineHealth at MaineHealth Knowledge Connection. It has been accepted for inclusion in Maine Medical Center by an authorized administrator of MaineHealth Knowledge Connection. For more information, please contact mckeld1@mmc.org.
Validity of neonatal POC glucose testing

Matthew Turnquist, MD, Amy Haskins, PhD, Christina Holt, MD, MSc

Maine Medical Center, Department of Family Medicine, Portland, ME

Background

Glucose monitoring is a common invasive intervention in newborn period
• Most commonly obtained laboratory value

Appropriate identification of hypoglycemia is critical:
• Severe hypoglycemia can lead to neurologic insult
• Cerebral palsy, developmental delay, seizures, death

Critical Issues

POC glucometers are subject to error in situations very common in neonates:
• Hypo/hyperglycemia
• Poor perfusion
• Hyperbilirubinemia
• Abnormal hematocrit
• Acetaminophen administration
• Alcohol on the overlying skin
• Peripheral vasocostriction

Current Recommendations vary:
ISO 2003 - 95% of values should fall:
• within +/- 15 mg/dl for glucose concentrations < 100 mg/dl
ISO 2013 - 95% of values should fall:
• within +/- 5 mg/dl for glucose concentrations < 100 mg/dl
FDA 2014 - 99% of all values should fall:
• within +/- 7 mg/dl for values < 70 mg/dl

Analysis of 17 different POC devices in 2017:
• 7 met ISO 2003 Criteria.
• 2 met ISO 2013 criteria (Ekhlaspour et al, 2017).

MMC uses FreeStyle Precision Pro meters, manufactured by Abbott
• No independent validation trial
• Manufacturer website states that they are ISO 2013 compliant
• Not studied in neonates

RESULTS

What is the accuracy of neonatal glucose measures at MMC?

Methods

• Retrospective data analysis

INCLUDED:
• all infants on the FM and Newborn services from July 1st, 2017 to June 30th, 2018.
• < 30 days old
• had both a POC and a serum measurement performed within 30 minutes of one another, and no documented feeding or administration of glucose in the intervening time

EXCLUDED:
• Infants w-glucose of nutrition within 30 min of the first measurement with rising glucose value

Characteristics of Patients

Table 1: Properties of blood glucose samples by delivery type, age, and ICD10 codes (N=141)

<table>
<thead>
<tr>
<th>Delivery Type</th>
<th>Number of infants</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal</td>
<td>74</td>
<td>52.48%</td>
</tr>
<tr>
<td>C-section</td>
<td>65</td>
<td>46.10%</td>
</tr>
<tr>
<td>Transfer from outside hospital</td>
<td>2</td>
<td>1.42%</td>
</tr>
</tbody>
</table>

Age in days

<table>
<thead>
<tr>
<th></th>
<th>Number of infants</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>66</td>
<td>46.81%</td>
</tr>
<tr>
<td>1</td>
<td>52</td>
<td>36.88%</td>
</tr>
<tr>
<td>2-3</td>
<td>19</td>
<td>13.48%</td>
</tr>
<tr>
<td>4+</td>
<td>4</td>
<td>2.84%</td>
</tr>
</tbody>
</table>

SGA

<table>
<thead>
<tr>
<th></th>
<th>Number of infants</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>equal</td>
<td>19</td>
<td>13.48%</td>
</tr>
<tr>
<td>LGAs</td>
<td>18</td>
<td>12.77%</td>
</tr>
</tbody>
</table>

At risk for hypoglycemia

<table>
<thead>
<tr>
<th></th>
<th>Number of infants</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>equal</td>
<td>42</td>
<td>29.79%</td>
</tr>
<tr>
<td>GM in Mother</td>
<td>10</td>
<td>7.09%</td>
</tr>
</tbody>
</table>

POC Glucometer performance relative to ISO Guidelines

Table 2: Comparison of POC and serum glucose values

<table>
<thead>
<tr>
<th>Serum</th>
<th>Number of samples</th>
<th>Mean POC</th>
<th>Mean Serum</th>
<th>Mean Serum - POC</th>
</tr>
</thead>
<tbody>
<tr>
<td><40</td>
<td>31</td>
<td>33.67</td>
<td>32.90</td>
<td>-0.77</td>
</tr>
<tr>
<td>≥40</td>
<td>110</td>
<td>10.42</td>
<td>10.46</td>
<td>0.04</td>
</tr>
</tbody>
</table>

POC Sensitivity for BG <40: 64.5% (± 16.4%) POCSensitivity for BG >40: 52.6% (± 15.9%)

CONCLUSIONS:
• Our POC meter appears to have poor sensitivity for hypoglycemia
• Our meter appears to have clinically significant error, with a bias toward overestimation of glucose in hypoglycemic infants
• Our meter does not appear to be meeting FDA or ISO guidelines in this population

Strengths and Limitations

Retrospective data analysis resulted variable timing of POC and serum testing (mean of 16 minutes between samples, SD of 8 min). This study would benefit from an interventional design with simultaneous measurements.

All intervention times were based on Epic records, which may not be entirely accurate or complete.

Acknowledgements

Thank you to David Cox, MD; Brian Youth, MD; Timothy Hayes, MD, DVM for their assistance and support.

Related Literature

