Learning curve of transfemoral carotid artery stenting in the Vascular Quality Initiative registry

Gabriel Jabbour, Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
Sai Divya Yadavalli, Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
Sabrina Straus, Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
Andrew P. Sanders, Division of Vascular and Endovascular Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
Vinamr Rastogi, Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Jens Eldrup-Jorgensen, Division of Vascular Surgery, Maine Medical Center, Tufts University School of Medicine, Portland, ME.

Abstract

OBJECTIVE: With the recent expansion of the Centers for Medicare and Medicaid Services coverage, transfemoral carotid artery stenting (tfCAS) is expected to play a larger role in the management of carotid disease. Existing research on the tfCAS learning curve, primarily conducted over a decade ago, may not adequately describe the current effect of physician experience on outcomes. Because approximately 30% of perioperative strokes/deaths post-CAS occur after discharge, appropriate thresholds for in-hospital event rates have been suggested to be <4% for symptomatic and <2% for asymptomatic patients. This study evaluates the tfCAS learning curve using Vascular Quality Initiative (VQI) data. METHODS: We identified VQI patients who underwent tfCAS between 2005 and 2023. Each physician's procedures were chronologically grouped into 12 categories, from procedure counts 1-25 to 351+. The primary outcome was in-hospital stroke/death rate; secondary outcomes were in-hospital stroke/death/myocardial infarction (MI), 30-day mortality, in-hospital stroke/transient ischemic attack (stroke/TIA), and access site complications. The relationship between outcomes and procedure counts was analyzed using the Cochran-Armitage test and a generalized linear model with restricted cubic splines. Our results were then validated using a generalized estimating equations model to account for the variability between physicians. RESULTS: We analyzed 43,147 procedures by 2476 physicians. In symptomatic patients, there was a decrease in rates of in-hospital stroke/death (procedure counts 1-25 to 351+: 5.2%-1.7%), in-hospital stroke/death/MI (5.8%-1.7%), 30-day mortality (4.6%-2.8%), in-hospital stroke/TIA (5.0%-1.1%), and access site complications (4.1%-1.1%) as physician experience increased (all P values < .05). The in-hospital stroke/death rate remained above 4% until 235 procedures. Similarly, in asymptomatic patients, there was a decrease in rates of in-hospital stroke/death (2.1%-1.6%), in-hospital stroke/death/MI (2.6%-1.6%), 30-day mortality (1.7%-0.4%), and in-hospital stroke/TIA (2.8%-1.6%) with increasing physician experience (all P values <.05). The in-hospital stroke/death rate remained above 2% until 13 procedures. CONCLUSIONS: In-hospital stroke/death and 30-day mortality rates after tfCAS decreased with increasing physician experience, showing a lengthy learning curve consistent with previous reports. Given that physicians' early cases may not be included in the VQI, the learning curve was likely underestimated. Nevertheless, a substantially high rate of in-hospital stroke/death was found in physicians' first 25 procedures. With the recent Centers for Medicare and Medicaid Services coverage expansion for tfCAS, a significant number of physicians would enter the early stage of the learning curve, potentially leading to increased postoperative complications.