Tranexamic acid suppresses the release of mitochondrial DNA, protects the endothelial monolayer and enhances oxidative phosphorylation.
Document Type
Article
Publication Date
11-1-2019
Institution/Department
Emergency Medicine; Cardiology; Trauma & Acute Care Surgery
Journal Title
Journal of cellular physiology
MeSH Headings
Oxidative Phosphorylation, DNA, Mitochondrial, Tranexamic Acid, Mitochondria, Protective Agents
Abstract
Damage-associated molecular patterns, including mitochondrial DNA (mtDNA) are released during hemorrhage resulting in the development of endotheliopathy. Tranexamic acid (TXA), an antifibrinolytic drug used in hemorrhaging patients, enhances their survival despite the lack of a comprehensive understanding of its cellular mechanisms of action. The present study is aimed to elucidate these mechanisms, with a focus on mitochondria. We found that TXA inhibits the release of endogenous mtDNA from granulocytes and endothelial cells. Furthermore, TXA attenuates the loss of the endothelial monolayer integrity induced by exogenous mtDNA. Using the Seahorse XF technology, it was demonstrated that TXA strongly stimulates mitochondrial respiration. Studies using Mitotracker dye, cells derived from mito-QC mice, and the ActivSignal IPAD assay, indicate that TXA stimulates biogenesis of mitochondria and inhibits mitophagy. These findings open the potential for improvement of the strategies of TXA applications in trauma patients and the development of more efficient TXA derivatives.
ISSN
1097-4652
First Page
19121
Last Page
19129
Recommended Citation
Prudovsky, Igor; Carter, Damien; Kacer, Doreen; Palmeri, Monica; Soul, Tee; Kumpel, Chloe; Pyburn, Kathleen; Barrett, Karyn; DeMambro, Victoria; Alexandrov, Ilya; Brandina, Irina; Kramer, Robert; and Rappold, Joseph, "Tranexamic acid suppresses the release of mitochondrial DNA, protects the endothelial monolayer and enhances oxidative phosphorylation." (2019). MaineHealth Maine Medical Center. 1473.
https://knowledgeconnection.mainehealth.org/mmc/1473