Body composition in amyotrophic lateral sclerosis subjects and its effect on disease progression and survival

Document Type

Article

Publication Date

5-1-2022

Institution/Department

Neurology

Journal Title

The American journal of clinical nutrition

MeSH Headings

Absorptiometry, Photon (methods); Amyotrophic Lateral Sclerosis; Body Composition (physiology); Body Mass Index; Disease Progression; Electric Impedance; Female; Humans; Male; Malnutrition

Abstract

BACKGROUND: Motor neuron degeneration and malnutrition alter body composition in amyotrophic lateral sclerosis (ALS). Resulting losses of weight, fat mass (FM), and fat-free mass (FFM) shorten survival. Nutritional management relies on body weight or BMI; neither reliably indicates malnutrition nor differentiates body compartments. OBJECTIVES: We aimed to 1) develop an equation to compute FM and FFM using clinical data, validated against DXA; and 2) examine the effect of computed FM and FFM on disease course and survival. METHODS: We studied 364 ALS patients from 3 cohorts. In Cohort #1 we used logistic regression on clinical and demographic data to create an equation (test cohort). In Cohort #2 we validated FM and FFM computed using this equation against DXA (validation cohort). In Cohort #3, we examined the effect of computed body composition on disease course and survival. RESULTS: In Cohort #1 (n = 29) the model incorporated sex, age, BMI, and bulbar-onset to create an equation to estimate body fat: % body fat = 1.73 - [19.80*gender (1 if male or 0 if female)] + [0.25*weight (kg)] + [0.95*BMI (kg/m2)] - (5.20*1 if bulbar-onset or *0 if limb-onset). In Cohort #2 (n = 104), body composition using this equation, compared to other published equations, showed the least variance from DXA values. In Cohort #3 (n = 314), loss of body composition over 6 mo was greater in males. Adjusted survival was predicted by low baseline FM (HR: 1.39; 95% CI: 1.07, 1.80), and loss of FM (HR: 1.87; 95% CI: 1.30, 2.69) and FFM (HR: 1.73; 95% CI: 1.20, 2.49) over 6 mo. CONCLUSIONS: Our equation broadens the traditional nutritional evaluation in clinics and reliably estimates body composition. Measuring body composition could target FM as a focus for nutritional management to ensure adequate energy intake and complement measures, such as the ALS functional rating scale-revised score and forced vital capacity, currently used.

First Page

1378

Last Page

1392

Share

COinS