A critical bioenergetic switch is regulated by IGF2 during murine cartilage development

Document Type

Article

Publication Date

11-11-2022

Institution/Department

Center for Molecular Medicine

Journal Title

Communications biology

MeSH Headings

Mice; Animals; Chondrogenesis; Cartilage (metabolism); Chondrocytes (metabolism); Hypertrophy (metabolism); Glycolysis; Glucose (metabolism)

Abstract

Long bone growth requires the precise control of chondrocyte maturation from proliferation to hypertrophy during endochondral ossification, but the bioenergetic program that ensures normal cartilage development is still largely elusive. We show that chondrocytes have unique glucose metabolism signatures in these stages, and they undergo bioenergetic reprogramming from glycolysis to oxidative phosphorylation during maturation, accompanied by an upregulation of the pentose phosphate pathway. Inhibition of either oxidative phosphorylation or the pentose phosphate pathway in murine chondrocytes and bone organ cultures impaired hypertrophic differentiation, suggesting that the appropriate balance of these pathways is required for cartilage development. Insulin-like growth factor 2 (IGF2) deficiency resulted in a profound increase in oxidative phosphorylation in hypertrophic chondrocytes, suggesting that IGF2 is required to prevent overactive glucose metabolism and maintain a proper balance of metabolic pathways. Our results thus provide critical evidence of preference for a bioenergetic pathway in different stages of chondrocytes and highlight its importance as a fundamental mechanism in skeletal development.

First Page

1230

Share

COinS