Notch Dosage Haploinsufficiency Is Associated With Reduced Neuronal Division and Disruption of Periglomerular Interneurons in Mice
Document Type
Article
Publication Date
2-2020
Institution/Department
MaineHealth Institute for Research
Journal Title
Frontiers in cell and developmental biology
Abstract
Neural stem cells in the lateral ganglionic eminence (LGE) generate progenitors that migrate through the rostral migratory stream (RMS) to repopulate olfactory bulb (OB) interneurons, but the regulation of this process is poorly defined. The evolutionarily conserved Notch pathway is essential for neural development and maintenance of neural stem cells. Jagged1, a Notch ligand, is required for stem cell maintenance. In humans, heterozygous mutations in JAGGED1 cause Alagille syndrome, a genetic disorder characterized by complications such as cognitive impairment and reduced number of bile ducts in the liver, suggesting the presence of a JAGGED1 haploinsufficient phenotype. Here, we examine the role of Jagged1 using a conditional loss-of-function allele in the nervous system. We show that heterozygous mice possess a haploinsufficient phenotype that is associated with a reduction in size of the LGE, a reduced proliferative state, and fewer progenitor cells in the LGE and RMS. Moreover, loss of Jagged1 leads to deficits in periglomerular interneurons in the OB. Our results support a dose-dependent role for Jagged1 in maintaining progenitor division within the LGE and RMS.
ISSN
2296-634X
First Page
113
Recommended Citation
Blackwood CA, Bailetti A, Nandi S, Gridley T, Hébert JM. Notch Dosage: Jagged1 Haploinsufficiency Is Associated With Reduced Neuronal Division and Disruption of Periglomerular Interneurons in Mice. Front Cell Dev Biol. 2020;8:113. Published 2020 Feb 26. doi:10.3389/fcell.2020.00113