Poststent ballooning during transcarotid artery revascularization

Document Type

Article

Publication Date

6-2021

Institution/Department

Surgery

Journal Title

Journal of vascular surgery

MeSH Headings

Aged; Aged, 80 and over; Angioplasty, Balloon (adverse effects, instrumentation, mortality); Carotid Artery Diseases (diagnostic imaging, mortality, physiopathology, therapy); Female; Hospital Mortality; Humans; Male; Retrospective Studies; Risk Assessment; Risk Factors; Stents; Stroke (etiology); Time Factors; Treatment Outcome

Abstract

BACKGROUND: Poststent ballooning/angioplasty (post-SB) have been shown to increase the risk of stroke risk after transfemoral carotid artery stenting. With the advancement of transcarotid artery revascularization (TCAR) with dynamic cerebral blood flow reversal, we aimed to study the impact of post-SB during TCAR. METHODS: Patients undergoing TCAR in the Vascular Quality Initiative between September 2016 and May 2019 were included and were divided into three groups: those who received prestent deployment angioplasty only (pre-SB, reference group), those who received poststent deployment ballooning only (post-SB), and those who received both prestent and poststent deployment ballooning (prepost-SB). Patients who did not receive any angioplasty during their procedure (n = 367 [6.7%]) were excluded because these represent a different group of patients with less complex lesions than those requiring angioplasty. Primary outcome was in-hospital stroke or death. Analysis was performed using univariable and multivariable logistic regression models. RESULTS: Of 5161 patients undergoing TCAR, 34.7% had pre-SB only, 25% had post-SB only, and 40.3% had both (prepost-SB). No differences in the rates of in-hospital and 30-day stroke, death, and stroke/death were observed among the three groups; in-hospital stroke/death in the pre-SB group was 1.4% (n = 25), post-SB 1.2% (n = 16), and prepost-SB 1.4% (n = 29; P = .92). However, patients undergoing post-SB and prepost-SB had higher rates of in-hospital transient ischemic attacks (TIA) (post-SB, 0.9%; prepost-SB, 1% vs pre-SB, 0.2%, P < .01) and postprocedural hypotension (16.6% and 16.8% vs 13.1%, respectively; P < .001). Post-SB also had longer operative times, as well as flow reversal and fluoroscopy times. On multivariable analysis, no association was seen between post-SB and the primary outcome of in-hospital stroke/death (post-SB odds ratio [OR], 0.88; 95% confidence interval [CI], 0.44-1.73; prepost-SB OR, 0.98; 95% CI, 0.57-1.70). Similarly, no significant differences were noted in terms of postprocedural hemodynamic instability and 30-day outcomes. However, post-SB and prepost-SB were associated with four times the odds of in-hospital TIA compared with pre-SB alone (post-SB OR, 4.24 [95% CI, 1.51-11.8]; prepost-SB OR, 4.76 [95% CI, 1.53-14.79]; P = .01). Symptomatic patients had higher rates of in-hospital stroke/death compared with their asymptomatic counterparts; however, there was no significant interaction between symptomatic status and ballooning in predicting the primary outcome. CONCLUSIONS: Post-SB was used in 65.3% of TCAR patients. This maneuver seems to be safe without an increase in the odds of postoperative in-hospital stroke/death. However, the increased rates of TIA associated with post-SB requires further investigation.

First Page

2041

Last Page

2049.e1

Share

COinS