Endothelial cells increase mesenchymal stem cell differentiation in scaffold-free 3D vascular tissue

Document Type

Article

Publication Date

8-7-2024

Institution/Department

Center for Molecular Medicine

Journal Title

Tissue engineering. Part A

Abstract

In this study, we present a versatile, scaffold-free approach to create ring-shaped engineered vascular tissue segments using human mesenchymal stem cell-derived smooth muscle cells (hMSC-SMCs) and endothelial cells (ECs). We hypothesized that incorporation of ECs would increase hMSC-SMC differentiation without compromising tissue ring strength or fusion to form tissue tubes. Undifferentiated hMSCs and ECs were co-seeded into custom ring-shaped agarose wells using four different concentrations of ECs: 0, 10, 20, and 30%. Co-seeded EC and hMSC rings were cultured in SMC differentiation medium for a total of 22 days. Tissue rings were then harvested for histology, western blotting, wire myography, and uniaxial tensile testing to examine their structural and functional properties. Differentiated hMSC tissue rings comprised of 20 and 30% ECs exhibited significantly greater SMC contractile protein expression, endothelin-1 (ET-1)-meditated contraction, and force at failure compared to the 0% EC rings. On average, the 0, 10, 20, and 30% EC rings exhibited a contractile force of 0.745 ± 0.117, 0.830 ± 0.358, 1.31 ± 0.353, and 1.67 ± 0.351 mN (mean ± SD) in response to ET-1, respectively. Additionally, the mean maximum force at failure for the 0, 10, 20, and 30% EC rings was 88.5 ± 36.2, 121 ± 59.1, 147 ± 43.1, and 206 ± 20.8 mN (mean ± SD), respectively. Based on these results, 30% EC rings were fused together to form tissue engineered blood vessels (TEBVs) and compared to 0% EC TEBV controls. The addition of 30% ECs in TEBVs did not affect ring fusion but did result in significantly greater SMC protein expression (calponin and smoothelin). In summary, co-seeding hMSCs with ECs to form tissue rings resulted in greater contraction, strength, and hMSC-SMC differentiation compared to hMSCs alone and indicates a method to create functional 3D human vascular cell co-culture model.

Share

COinS