High throughput kinomic profiling of human clear cell renal cell carcinoma identifies kinase activity dependent molecular subtypes.
Document Type
Article
Publication Date
9-2015
Institution/Department
CORE; MMCRI
Journal Title
PloS one
MeSH Headings
Carcinoma, Renal Cell, Cluster Analysis, Disease Progression, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, Kidney Neoplasms, Male, Middle Aged, Protein Kinases, Treatment Outcome
Abstract
Despite the widespread use of kinase-targeted agents in clear cell renal cell carcinoma (CC-RCC), comprehensive kinase activity evaluation (kinomic profiling) of these tumors is lacking. Thus, kinomic profiling of CC-RCC may assist in devising a classification system associated with clinical outcomes, and help identify potential therapeutic targets. Fresh frozen CC-RCC tumor lysates from 41 clinically annotated patients who had localized disease at diagnosis were kinomically profiled using the PamStation®12 high-content phospho-peptide substrate microarray system (PamGene International). Twelve of these patients also had matched normal kidneys available that were also profiled. Unsupervised hierarchical clustering and supervised comparisons based on tumor vs. normal kidney and clinical outcome (tumor recurrence) were performed and coupled with advanced network modeling and upstream kinase prediction methods. Unsupervised clustering analysis of localized CC-RCC tumors identified 3 major kinomic groups associated with inflammation (A), translation initiation (B), and immune response and cell adhesions (C) processes. Potential driver kinases implicated include PFTAIRE (PFTK1), PKG1, and SRC, which were identified in groups A, B, and C, respectively. Of the 9 patients who had tumor recurrence, only one was found in Group B. Supervised analysis showed decreased kinase activity of CDK1 and RSK1-4 substrates in those which progressed compared to others. Twelve tumors with matching normal renal tissue implicated increased PIM's and MAPKAPK's in tumors compared to adjacent normal renal tissue. As such, comprehensive kinase profiling of CC-RCC tumors could provide a functional classification strategy for patients with localized disease and identify potential therapeutic targets.
ISSN
1932-6203
First Page
0139267
Last Page
0139267
Recommended Citation
Anderson, Joshua C; Willey, Christopher D; Mehta, Amitkumar; Welaya, Karim; Chen, Dongquan; Duarte, Christine W; Ghatalia, Pooja; Arafat, Waleed; Madan, Ankit; Sudarshan, Sunil; Naik, Gurudatta; Grizzle, William E; Choueiri, Toni K; and Sonpavde, Guru, "High throughput kinomic profiling of human clear cell renal cell carcinoma identifies kinase activity dependent molecular subtypes." (2015). MaineHealth Maine Medical Center. 395.
https://knowledgeconnection.mainehealth.org/mmc/395